Regularized mixture discriminant analysis
نویسندگان
چکیده
In this paper we seek a Gaussian mixture model (GMM) of the classconditional densities for plug-in Bayes classification. We propose a method for setting the number of the components and the covariance matrices of the class-conditional GMMs. It compromises between simplicity of the model selection based on the Bayesian information criterion (BIC) and the high accuracy of the model selection based on the cross-validation (CV) estimate of the correct classification rate. We apply an idea of Friedman (1989) to shrink a predefined covariance matrix to a parameterization with substantially reduced degrees of freedom (reduced number of the adjustable parameters). Our method differs from the original Friedman’s method by the meaning of the shrinkage. We operate on matrices computed for a certain class while the Friedman’s method shrinks matrices from different classes. We compare our method with the conventional methods for setting the GMMs based on the BIC and CV. The experimental results show that our method has the potential to produce parameterizations of the covariance matrices of the GMMs which are better than the parameterizations used in other methods. We observed significant enlargement of the correct classification rates for our method with respect to the other methods which is more pronounced as the training sample size decreases. The latter implies that our method could be an attractive choice for applications based on a small number of training observations.
منابع مشابه
A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image Feature Extraction
Local Fisher Discriminant Analysis (LFDA) is a feature extraction method which combines the ideas of Fisher discriminant analysis (FDA) and locality preserving projection (LPP). It works well for multimodal problems. But LFDA suffers from the under-sampled problem of the linear discriminant analysis (LDA). To deal with this problem, we propose a regularized orthogonal local Fisher discriminant ...
متن کاملRegularized Parameter Estimation in High-Dimensional Gaussian Mixture Models
Finite gaussian mixture models are widely used in statistics thanks to their great flexibility. However, parameter estimation for gaussian mixture models with high dimensionality can be challenging because of the large number of parameters that need to be estimated. In this letter, we propose a penalized likelihood estimator to address this difficulty. The [Formula: see text]-type penalty we im...
متن کاملPhoneme recognition in fixed context using regularized discriminant analysis
Speaker independent discrimination of four confusable consonants in the strictly fixed context of six vowels is considered. The consonants are depicted by features of consonant’s stationary part and changing rate of features (delta features) in transition from consonant to the following vowel. The mel frequency cepstrum (MFCC), linear prediction cepstrum (LPCC), recursive filter (F12) features ...
متن کاملAlgorithms for Regularized Linear Discriminant Analysis
This paper is focused on regularized versions of classification analysis and their computation for highdimensional data. A variety of regularized classification methods has been proposed and we critically discuss their computational aspects. We formulate several new algorithms for regularized linear discriminant analysis, which exploits a regularized covariance matrix estimator towards a regula...
متن کاملExpression Arrays and the p n Problem
Gene expression arrays typically have 50 to 100 samples and 5,000 to 20,000 variables (genes). There have been many attempts to adapt statistical models for regression and classification to these data, and in many cases these attempts have challenged the computational resources. In this article we expose a class of techniques based on quadratic regularization of linear models, including regular...
متن کاملRegularized Discriminant Analysis, Ridge Regression and Beyond
Fisher linear discriminant analysis (FDA) and its kernel extension—kernel discriminant analysis (KDA)—are well known methods that consider dimensionality reduction and classification jointly. While widely deployed in practical problems, there are still unresolved issues surrounding their efficient implementation and their relationship with least mean squares procedures. In this paper we address...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 28 شماره
صفحات -
تاریخ انتشار 2007